Field Trial on Overdosed Organic Manures on Chemical Properties of Soil

A. Senthil Murugan*1 and K. Tharmaraj2

1Forest Research Centre, Institute of Forest Productivity, Mandar – Bazar, Mandar, Ranchi – 835 214, Jharkhand, India.
2Department of Zoology, Annamalai University, Chidambaram – 608 002, Tamil Nadu, India.

Received 12 Sep 2011; Revised 08 Nov 2011; Accepted 19 Nov 2011

ABSTRACT
In this present study, the field experiment was conducted to evaluate the overdosed effect of organic manures on chemical properties of soil under potato cultivation field. The experimental plot was divided into 15 sub-plots with size of 5m x 5m of which 5 sub-plots each allotted for compost, vermicompost and vermileachate treatment and one sub-plot of vermileachate was kept as control. Compost and vermicompost were applied with increasing concentration of 10 tonne/ha to 60 tonne/ha in the interval of 10 tonne/ha of potato field. Vermileachate was prepared at different dilution of water via 25%, 50%, 75% and 100% (v/v) and irrigated at the rate of 3L/sq.m at 15days interval. At the end of experiment, chemical properties viz., pH, EC, organic carbon and available N, P and K of post-manure soils were estimated. As the application of organic manures increases carbon level in the soil, it improves the soil fertility as well as offset CO2 level from atmosphere.

Key words: Compost, Vermicompost, Vermileachate, Soil, Organic manure and Potato.

1. INTRODUCTION
The health and quality of natural resources especially soil and water under intensive human management is severely affected throughout the world. The pressure to sustain modern agricultural systems causes a progressive degradation of soil health as a result of organic matter reduction [1]. As a consequence, the arable lands need, continuously, nutritional substances to maintain its fertility. The numerous reports confirmed that organic manures of different sources are enhancing soil quality, which includes pH, nutrient availability and bulk density [2,3,4]. Organic manures affect almost all characters of the soil [5]. Organic manures especially compost and vermi-compost possess diverse of beneficial microorganisms, which affects soil fertility and suppress plant diseases to promote plant growth [6]. Vermicompost is reported to be rich in plant nutrients [7,8] and has plant growth influencing substances like growth hormones and humic acids, which are contributing to higher growth and yields [9,10]. The objective of the present study was attempted to evaluate the effect of over dose of organic manures on chemical properties of potato cultivated soil.

2. MATERIALS AND METHODS
2.1. Study area
A study was conducted under potato cultivation during in the month of October – December, 2009 at Forest Research Centre, Mandar, Jharkhand (N 23° 27’ 41.3” and E 085° 05’ 57.0”) at an altitude of 703m above mean sea level, having an annual average rainfall of 1400mm; humid to sub humid tropical type of climate. Annual temperature ranges from maximum 42 to 20°C during summer and 25 to 4°C during winter season. Soil of study site was lateritic in nature.

2.2. Experiment
The research field was divided in to 15 equal sub-plots (5m x 5m) of these 5 sub-plots each allotted for compost and vermi-compost equally. Compost and vermi-compost were applied on the soil and incorporated well by hand hoeing @ 10tonne/ha (T10), 20tonne/ha (T20), 40tonne/ha (T40), 50tonne/ha (T50) and 60tonne/ha (T60). Potato crop was sown in month of December 2009 with sparings 1 x 1.5 ft in 6 rows. The liquid collected from vermi-composting bed called as Vermi-leachate (VL). The VL was prepared in different dilutions with irrigation water viz., 25% VL(T1), 50% VL (T2), 75% VL (T3) and 100%
A. Senthil Murugan et al. / Field Trial on Overdosed Organic Manures on Chemical Properties of Soil

VL (T₄) and applied the same on one month old potato seedling as foliar spray at the rate of 3L/5m² in 4 sub-plots separately. One plot was treated as control for all treatments. Crop protection measures and watering were done as per the recommendations.

2.3 Analysis of soil samples
Representative soil samples were collected from the pit, (30 x 30 x 30cm depth) at the study site before (Control) and after the treatment. Samples were brought to the laboratory and air dried ground through Cyclotech sample mill and screened through 2 - mm sieve as per standard procedure, and chemical characteristics (pH, EC, organic carbon, available phosphorus, and potassium of all processed soil (< 2mm) were determined as per methods described by Jackson (1967)¹¹. The available nitrogen was estimated as described by Subbiah and Asija (1956)¹².

3. RESULTS AND DISCUSSION
3.1. Soil pH
The soil pH was significantly reduced in all treated field when compared to that of the control (Table 1 & 2). The pH reduction was due to the release of different organic acids and production of CO₂ by microbes from applied organic manures, compost which leads to the increase in acidity of the soil, [¹³, ¹⁴].

3.2. Soil EC
The soil electrical conductivity was significantly increased in all treated field when compared to that of the control (Table 1 & 2). This may be due to the accumulation of soluble salts into the soil. The maximum accumulation was found in vermileachate treated soil.

3.3. Chemical properties of organic manure soils
3.3.1. Soil Carbon.
The total organic carbon content in all the treated soil nearly increased 18 – 20 times than the control (Table 1 & 2) as the result of reduction of decomposition rate by microbial activity at low pH and accumulation of over dosed effect of carbon [¹⁵].

3.3.2. Soil Nitrogen content.
The soil available nitrogen content present in the treated soil varies significantly than the control (Table 1 & 2). The available nitrogen content gets reduced due to the direct influence of increased acidity on the microbial activity of the compost treated field. On the other hand, the available nitrogen content showed twofold increase in the vermi-composted field. This was due to the metabolic activity of diverse population of microbes and mortality of earthworms which contains high amount of ammonical nitrogen in their tissues as described Suthar (2007)¹⁶.

3.3.2.2. Nitrogen content in Vermicompost treated soil.
The impact of increased acidity on the vermi-compost field wasn’t shown any significant effect on nitrogen availability. This may be due to the presence of wide range of acid tolerant microbes in the vermi-compost.

3.3.2.3. Nitrogen content in Vermi leachate treated soil.
The soil available nitrogen content present in the treated soil varies significantly than the control (Table 1 & 2). Vermi leachate contains Acetobacter, Agrobacterium, Rhizobium and phosphate solubilizing microbes which make available inorganic form of nitrogen, amino acid and other inorganic phosphates to plants through ammonification and nitrification processes Jambare et al. (2008)¹⁷. Likewise, Prabu (2006)¹⁸ reported presence of large number of beneficiary microorganism which helps in plant growth and protects it from a number of infestations.

3.3.3. Phosphorus content in treated soil
The phosphorus availability gets slightly reduced in all treated plots, which correlates with the soil acidity. This may be due to the phosphate fixation by Fe³⁺ and Al³⁺ at the range of pH 4.5 – 7.5. Similarly, Ndégwa et al. (2000)¹⁹ reported that the shifting of pH could be related to mineralization of nitrogen and phosphorus into nitrites/nitrates and ortho – phosphates and bioconversion of organic material into intermediate species of organic acids.

3.3.4. Potassium content in treated soil
The availability of potassium gets increased manifold in all the treated soil. This was due to the synergetic effect of earthworm and microorganism [²⁰] and influenced by the release of fixed K⁺ ion by the hydronium of organic acids.
Table 1: Effect of compost (C) and Vermicompost (VC) on chemical properties of soil

<table>
<thead>
<tr>
<th>Organic Treatment</th>
<th>pH (1:5)</th>
<th>pH (1:2.5)</th>
<th>EC (1:5, mS/cm)</th>
<th>OC (%)</th>
<th>Available (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Tc</td>
<td>6.15</td>
<td>0.24</td>
<td>0.73</td>
<td></td>
<td>396.3</td>
</tr>
<tr>
<td>T10</td>
<td>5.8</td>
<td>4.95</td>
<td>0.46 0.39</td>
<td>13.2</td>
<td>13.5</td>
</tr>
<tr>
<td>T20</td>
<td>4.75</td>
<td>4.1</td>
<td>0.52 0.45</td>
<td>14</td>
<td>13.9</td>
</tr>
<tr>
<td>T30</td>
<td>4.35</td>
<td>4.15</td>
<td>0.63 0.52</td>
<td>14</td>
<td>13.8</td>
</tr>
<tr>
<td>T40</td>
<td>4.06</td>
<td>4.22</td>
<td>0.68 0.55</td>
<td>14</td>
<td>13.7</td>
</tr>
<tr>
<td>T50</td>
<td>4.94</td>
<td>4.8</td>
<td>0.68 0.57</td>
<td>13.9</td>
<td>13.6</td>
</tr>
<tr>
<td>T60</td>
<td>5.6</td>
<td>4.72</td>
<td>0.72 0.57</td>
<td>14.2</td>
<td>14.1</td>
</tr>
<tr>
<td>Mean</td>
<td>4.917</td>
<td>4.49</td>
<td>0.615 0.51</td>
<td>13.833</td>
<td>160</td>
</tr>
</tbody>
</table>

SD: 0.68 0.37 0.33 0.07 0.35 0.22 17.92 9.50 0.03 0.07 197.56 124.07

Table 2: Effect of vermileachate (VL) on chemical properties of soil

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pH (1:5)</th>
<th>EC (1:5, mS/cm)</th>
<th>OC (%)</th>
<th>Available (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Tc</td>
<td>6.15</td>
<td>0.24</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>4.09</td>
<td>0.73</td>
<td>13.8</td>
<td>178</td>
</tr>
<tr>
<td>T2</td>
<td>4.8</td>
<td>0.75</td>
<td>14.1</td>
<td>207</td>
</tr>
<tr>
<td>T3</td>
<td>3.83</td>
<td>0.79</td>
<td>14</td>
<td>164</td>
</tr>
<tr>
<td>T4</td>
<td>3.8</td>
<td>0.82</td>
<td>13.8</td>
<td>158</td>
</tr>
<tr>
<td>Mean</td>
<td>4.13</td>
<td>0.7725</td>
<td>13.925</td>
<td>176.75</td>
</tr>
<tr>
<td>SD</td>
<td>0.46526</td>
<td>0.0403</td>
<td>0.15</td>
<td>21.8384</td>
</tr>
</tbody>
</table>

SD: 0.46526 0.0403 0.15 21.8384 0.0873 35.01785

4. CONCLUSION
From the present study, it is concluded that acidity and electrical conductivity of the soil were reduced significantly by addition of organic manure. Most interesting finding of the study was that soil organic carbon is increased manifold of the initial carbon level. Thus organic manure plays vital role in enhancing carbon sequestration and soil organic matter improvement. The available N was improved by the addition of vermicompost. Available P content was reduced in all treated soils, whereas available K content improved in the treated soil. Thus, application of organic manures especially vermicompost help not only in the improvement of soil health and fertility but also helps in off-setting atmospheric \(\text{CO}_2 \) through enhancement of soil organic carbon.

ACKNOWLEDGEMENT
The authors would like to express their sincere thanks to the Director, Institute of Forest Productivity (IFP), Ranchi for their constant support and encouragement thorough out the study.

REFERENCES

