Abstract

Anticonvulsants are a diverse group of pharmaceuticals used in the treatment of epileptic seizures. The goal of an anticonvulsant is to suppress the rapid and excessive firing of neurons that start a seizure. The use of current antiepileptic drugs has been questioned due to the non-selectivity of the drugs and the undesirable side effects posed by them. This lead to the search for antiepileptic compounds with more selective activity and lower toxicity continues to be an area of investigation in medicinal chemistry. This review describes various moieties representing anticonvulsant activity.

Keywords: Anticonvulsant, maximal electroshock, subcutaneous pentylenetetrazole induced seizure.

INTRODUCTION

Epilepsy, a ubiquitous disease characterized by recurrent seizure which results from a temporary electrical disturbance of the brain due to imbalance between excitatory and inhibitory neurotransmitters inflicts more than 60 million people worldwide. Nearly 95% of clinically available drugs for the treatment of epilepsy were approved before 1985 and they could provide seizure control for 60-70% of patient, but their use is often limited by adverse effects such as drowsiness, ataxia, gastrointestinal disturbance, hepatotoxicity and megaloblastic anaemia and even life threatening condition. Therefore, the need for more effective and less toxic antiepileptic drugs still exists. In the effort to get those agents, we have reported several heterocyclic compounds which have shown considerable anticonvulsant activities. Mainly two kinds of epilepsy have been identified, one with grandmal and other with petitmal. Anticonvulsant drugs with MES (maximal electroshock) activity are generally useful in grandmal, while ScMet (subcutaneous metrazole) antagonist are effective in petitmal.

Pyrazole

Ozdemir et al [1] synthesized twelve 1-phenyl, 1-thiocarbamoyl, and 1N-substituted thiocarbamoyl-3-(2-furyl)-5-phenyl(2-furyl-2)-pyrazoline derivatives (1). Anticonvulsant activity of the compounds were detected by maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (metrazol) (scMet) tests. Neurotoxicity was determined by rotarod toxicity test on albino mice. The compound with substituent in structure (1) was found to be protective against MES and ScMet.

Singh et al [2] synthesized a series of 1-[(4,5-dihydro-5-phenyl-3-(phenylamino)pyrazole-1-yl)]ethanone derivatives (2) from chalcones of anilides and evaluated for their anticonvulsant activity against electric shock induced convulsion method in rat at a dose of 125 mg/kg and 250 mg/kg ip. All the compounds synthesized possess anticonvulsant activity. Chlorine substitution at the position-2 in compound 1-[(4,5-dihydro-5-(2-chloro)phenyl-3-(phenylamino)pyrazole-1-yl)]ethanone (2a) and position 2,4 in compound 1-[(4,5-dihydro-5-(2,4-
dichloro)phenyl-3-(phenylamino)pyrazol-1-ethanone (2b) have significant activity.

Abdel Aziz et al. [3] synthesized a set of pyrazolone derivatives (3) and screened for their anticonvulsant activity. The compounds, ethyl-1-benzoyl-4-cyano-5-oxo-2,5-dihydro-1H-pyrazole-3-carboxylate (3a), ethyl-1-(thiophene-2-carbonyl)-4-cyano-5-oxo-2,5-dihydro-1H-pyrazole-3-carboxylate (3b) and ethyl-1-(1H-indole-2-carbonyl)-4-cyano-5-oxo-2,5-dihydro-1H pyrazole-3-carboxylate (3c) exhibited remarkable protective effect against clonic seizure induced by i.p injection of PTZ at a dose level of 20 mg/kg. Anticonvulsant activity found to be nearly close to phenobarbital sod. At a dose level of 30 mg/kg and more potent than phenytoin sod. at a dose level of 30 mg/kg.

Thiadiazole
Dogan et al. [4] synthesized a series of 2,5-disubstituted-1,3,4-thiadiazole (4). These compounds afforded protection at a dose of 100 mg/kg against pentyleneetrazole-induced convulsion in mice. Compounds 2-ethylamino-5-(3-hydroxy-2-naphthyl)-1,3,4-thiadiazole (4a) and 2-(3-Fluorophenyl amino-5-(3-hydroxy-2-naphthyl)-1,3,4-thiadiazole (4b) showed maximum protection.

Gupta et al. [5] synthesized a series of 3-aryl amino/amino-4 aryl-5-imino-Δ² 1,2,4-thiadiazoline derivative (5,6). Synthesized compound was evaluated against MES and (ScPTZ) induced seizure model in mice. Compound (5a) was found to be active in ScPTZ test. Whereas all 6(a-i) showed protection from MES seizure.

Archana et al. [6] synthesized 3-[(4-[2-(alkylphenyl)-4-oxo-1,3-thiazolidine-3-yl]-1,3,4-thiadiazol-2-yl) methylamino]-2-methyl-6-monosubstituted quinazoline(4H)-one (7). Of all these compound synthesized, the most active was 3-[(4-[3-methoxy-p-hydroxyphenyl]-4-oxo-1,3-thiazolidine-3-yl]-1,3,4 thiadiazol-2-yl]methylamino)-2-methyl-6-bromoquinazolin-4(3H)-one (7a).

Pattanayak et al. [7] synthesized 2-amino-5-sulfonyl-1,3,4-thiadiazoles (8) derivatives by varying the substituents in the thiadiazole moiety. The newly synthesized compounds 4-(5-benzoylamino-[1,3,4-thiadiazole-2-yl-sulfanyl]-benzene sulfonyl chloride (8a), N-[5-(4-sulfoamoyl-phenyl sulfanyl)-1,3,4 thiaidiazol-2-yl]-benzamide (8b) and N-[5-(4-fluoro-phenyl sulfanyl)-1,3,4thiadiazol-2-yl]benzamide (8c) were found to possess significant anticonvulsant activity against both MES and PTZ animal model.

Quinolines
Xie et al. [8] synthesized a series of 7-alkoxy-4,5-dihydro-[1,2,4]triazole[4,3-a]quinoline derivatives (9) from 6-hydroxy-3,4-dihydro-1H-quinoline-2-one as starting material. Anticonvulsant activity was evaluated by (MES test) and subcutaneous (Sc) pentyleneetrazole test (ScMet test) and

© 2010, IJPBA. All Rights Reserved.
neurotoxicity test. MES and ScMet test shows that 7-(4-flourobenzyloxy)-4,5-dihydro-(1,2,4)triazolo [4,3-a]quinoline (9a) was found to be most potent.

Guo et al [9] synthesized a series of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives (10) using 4-hydroxyquinolin-2-[[1H]-one as a starting material. Anticonvulsant activity was evaluated by MES and neurotoxicity by rotarod test. Compound 5-hexyloxy-[1,2,4]triazolo[4,3-a]quinoline (10a) was the most potent anticonvulsant and compound 5-benzyloxy-[1,2,4]triazolo[4,3a]quinoline (10b) exhibited little weaker activity than the first one in controlling seizure induced by MES test but possessed lower neurotoxicity.

Sun et al [10] synthesized a series of 8-alkoxy-5,6-dihydro-(1,2,4)triazino[4,3-a]quinoline-1-one derivatives (11). Anticonvulsant activity were evaluated by MES and neurotoxicities were evaluated by rotarod neurotoxicity test. Compound 8-heptyloxy-5,6-dihydro-[1,2,4]triazino[4,3a] quinoline-1-one (11a) was the most potent.

Anticonvulsant activity was evaluated by MES and neurotoxicity by rotarod neurotoxicity test. Compound 3-ethyl-4-(4-heptyloxyphenyl)-4H-1,2,4-triazole (12a) found to be most potent. Whereas, 3-ethyl-4-(4-octyloxyphenyl)-4H-1,2,4-triazole (12b) exhibited better PI value which was much greater than prototype drug phenytoin.

Isoquinoline

Gitto et al [12] synthesized a novel series of 1-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives (13) as potential AMPA (non-competitive) receptor antagonist. Some of the compounds showed high anticonvulsant activity against sound induced seizure in DBA/2 mice.

Gitto et al [13] identified (R, S)-2-acetyl-1-(4'-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (14) as a potent non competitive AMPA receptor antagonist able to prevent epileptic seizures. The biological tests of single enantiomers revealed higher anticonvulsant and antagonistic effects, resides in (R)-enantiomer as also suggested by molecular modelling.

Gitto et al [14] synthesized new N-substituted isoquinolines based on ligand based approach which is identified as noncompetitive AMPA receptor antagonist. Compounds were screened against audiogenic seizure and some showed anticonvulsant properties. Compound 1-(4-fluorophenyl)-6,7-dimethoxy-2-[oxo(piperidine-1-yl)acetyl]-1,2,3,4-tetrahydroisoquinoline (15) most active of the series was also tested in-vitro using patch-clamp techniques and proved to antagonize AMPA mediated effects.
Gitto et al.[15] planned a solution phase parallel synthesis of new N-substituted-3,4-dihydro isoquinoline-2[1H]-carboxamide exploring the introduction of different (cyclo) alkyl groups (16) at carboxamide moiety linked to N-2 atom of isoquinoline scaffold. Anticonvulsant effects were evaluated against audiogenic seizures in DBA/2 mice. Some new derivatives were more active than valproate, instead modification did not improve anticonvulsant efficacy with respect to their precursors.

Oxadiazole

Gitto et al.[16] synthesized a series of 1-aryl-6, 7-dimethoxy-3,4-dihydroisoquinoline-2-(1H) sulphonamides (17). New compound incorporate Zarghi et al.[17] synthesized a series of new 2-substituted-5-(2-benzylthiophenyl)-1,3,4-oxadiazole (18) and evaluated for anticonvulsant agent with the help of conformational analysis and superimposition of energy minima conformer of the designed molecules reveals that, it is well matched with main proposed benzodiazepine pharmacophores (estazolam, a known benzodiazepine agonist). Electroshock and PTZ induced lethal convulsion test showed that introduction of amino group in position 2 of 1,3,4-oxadiazole ring and fluoro substituent at para position of benzylthio moiety had the best anticonvulsant activity which seems to be mediated through benzodiazepine receptor mechanism.

Lankau et al.[19] prepared a series of 3- and 5-aryl-1,2,4-oxadiazole derivatives (20) and tested for anticonvulsant activity in variety of models. Compound 5-phenyl-3-[1,2,4]triazole-1-ylmethyl [1,2,4]oxadiazole (20a) was protective in the PTZ model and MES model in rat. It was found that several oxadiazole that acted as selective GABA potentiating compound with no interaction to the benzodiazepine binding site.

Almasirad et al.[18] synthesized a series of new 2-substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles (19) and screened for anticonvulsant activity. Compound 2-amino-5-[2-(2-flouro phenoxy)phenyl]-1,3,4-oxadiazole (19a) shows considerable anticonvulsant activity in both PTZ and MES models which seems to be mediated by benzodiazepine receptors and other unknown mechanism.

Isatin

Verma et al.[20] synthesized Schiff base of N-methyl and N-acetyl isatin derivatives with different aryl amines and screened for anticonvulsant activities against MES & subcutaneous metrazole (ScMet). N-methyl-5-bromo-3(4-chlorophenylimino)isatin (21) exhibited anticonvulsant activity in MES & ScMET with LD50 >600 mg/kg showing better activity than the standard drug phenytoin, carbamazepine and valproic acid.
Sridhar et al. \[21\] evaluated anticonvulsant activity of hydrazones, Schiff and Mannich base of isatin by MES and metrazol-induced convulsion (MET) at different dose levels. Among the eight compounds 3-(4-chlorophenylimino)-5-methyl-1,3-dihydroindol-2-one (22) was found to be the most potent compound of the series with 87% protection at 100 mg/kg and ED₅₀ of 53.61 mg/kg (MET). The entire active compound showed greater protection than sod. valproate.

Pandeya et al. \[22\] synthesized a series of N-methyl/acetyl 5-(un)-substituted isatin semicarbazone (23) and screened for anticonvulsant and sedative-hypnotic activities. It was observed that compounds showed protection in all screens i.e. MES, Sc PTZ and Sc STY. Compounds (23a), (23b) emerged as the most active compounds as indicated by the protection they exhibit in MES, Sc PTZ, and Sc STY screens.

Popp et al. \[23\] synthesized a series of new 3-hydroxy-3-substituted o xindoles (24), (25) and screened for their anticonvulsant activity. A number of these 3-hydroxyoxindole had shown activity in maximal electroshock seizure test.

Smitha et al. \[24\] synthesized a series of N-methyl/acetyl 5-(un)-substituted isatin-3-semicarbazole (26) and screened for their anticonvulsant activity. Anticonvulsant activities of the compounds were detected by maximal electroshock (MES), subcutaneous pentylentetrazole (scPTZ) and subcutaneous strychnine (scSTY) screens. Among all the compounds 1-acetyl-1H-indole-2,3-dione-[N-(4-chlorophenyl)semicarbazone] (26a), 1-acetyl-1H-indole-2,3-dione-[N-(4-nitrophenyl)semicarbazone] (26b), 4-[[2-(1-acetyl-5-bromo-2-oxo-1,2-dihydro-3H-indol-3-ylidene)hydrazino][carbonyl]} amino)benzenesulfonamide (26c) emerged as broad-spectrum compounds as indicated by their protection in MES, sc PTZ and sc STY screens.

Semicarbazone
Yogeeswari et al. \[25\] synthesized a series of 4-ethoxyphenyl semicarbazones (27a), (27b) and evaluated against MES and and ScPTZ induced seizure in mice. Among, the compound tested the compound with substituent shown above showed protection from seizure in both animal models.
Mostly exhibit protection in all three seizure model in which N-[2,4-dimethoxyphenyl]-N'-propan-2-one semicarbazone (28) found to be most active with no neurotoxicity. The compound was also found to elevate γ-amino butyric acid (GABA) level in the mid brain and medulla oblongata region.

Siddiqui et al. [27] synthesized a series of 1,3-benzo-thiazole-2-yl-semicarbazones (29) and evaluated for their anticonvulsant, neurotoxicity and other toxicity studies. Majority of the compounds were active in MES screens.

Siddiqui et al. [28] synthesized several heteroaryl semicarbazone by the reaction of heteroaryl hydrazine carboxamide with aryl aldehyde or ketone. Compound were tested for anticonvulsant activity utilising PTZ and MES and found that (1E)-1-arylalkane-1-one-N-[4-(2-oxo-2H-chromen-2-yl)-1,3-thiazol-2-yl]semicarbazone (30) exhibited significant anticonvulsant activity at 30 mg/kg dose level comparable to the standard drug taken as phenytoin.

Deng et al. [30] synthesized a series of 10-alkoxy-5,6-dihydro-triazolo[4,3-d] benzo(f)[1,4] oxazepine derivatives (33) and screened for their anticonvulsant activity by MES and their neurotoxicity by rotarod neurotoxicity test. In the MES test compound 10-Heptyloxy-5,6-dihydrotriazolo[4,3-d]benzo[f]1,4-oxazepine (33a) was found to possess better anticonvulsant activity and higher safety than marketed drug carbamazepine and phenytoin.

Bajaj et al. [31] synthesized a series of 2-substituted phenyl-3-(substitutedphenylamino)methyl 2,3-dihydro-4-diphenylaminomethyl-1,5-benzoxazepine (34) and 2-substituted phenyl-3-substitutedphenylazo-2,3-dihydro-4-diphenylaminomethyl-1,5-benzoxazepine (35) from 2-substitutedphenyl-2,3-dihydro-4-diphenyl amino-1,5-benzoxazepine by mannich reaction and diazotization reaction. Compounds were screened for their anticonvulsant activity and acute toxicity studies. Compound 2-(3-methoxy-4-hydroxyphenyl)-3-(2-methoxyphenylaminomethyl)-2,3-dihydro-1,5-benzoxazepine (31a) was found to be most potent of this series and was compared with reference drug phenytoin.

Benzoxazepine

Garg et al. [29] synthesized a new series of 4-(4’-hydroxyphenyl)-2-(3-substitutedphenyl)-3-(4-substituted phenylaminomethylene)-2,3-dihydro-1,5-benzothiazepine (31) and 4-(4’-hydroxyphenyl)-2-(3-substitutedphenyl)-3-(4-substituted phenylaminomethylene)-2,3-dihydro-1,5-benzo xazepine (32) and evaluated for their anticonvulsant activity. Compound 4-(4’-hydroxyphenyl)-2-(3-chlorophenyl)-3-[2-(methylene phenylaminomethylene)]-2,3-dihydro-1,5-benzo thiazepine (31a) was found to be most potent of this series and was compared with reference drug phenytoin.
Quinazoline

Georgey et al. [32] synthesized number of 3-substituted-2-(substituted-phenoxymethyl) quinazolin-4 (3H) one derivatives (36). Prepared compounds were evaluated for anticonvulsant activity and some of them exhibit moderate to significant activity compared to diazepam standard. Compound 3-chloro-N-2-((2,4-dichlorophenoxy methyl)-4-oxo-quinazolin-3(4H)-yl) propanamide (36a) was found to be most potent.

Kashaw et al. [33] synthesized new 1-(4-substituted-phenyl)-3-(4-oxo-2-phenyl/ethyl-4H-quinazolin-3-yl)-urea (37), (38) and screened for anticonvulsant activity by MES and ScPTZ induced seizure models and neurotoxicity by rotarod method. All of the compounds showed found to be active. All the compounds were found to exhibit potent CNS depressants activity.

Wang et al. [34] synthesized several derivatives of 5-alkoxy-tetrazolo[1,5-a]quinazoline (39) by reacting 2,4-dichloroquinazoline with various phenol or aliphatic alcohol and then with sodium azide. Anticonvulsant activity was evaluated against MES test. Most of the synthesized compound display weak anticonvulsant activity at a dose of 300 mg/kg.

Kashaw et al. [36] synthesized a new series of 3-[5-substituted phenyl-1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4-(3H)-ones (40) and evaluated for anticonvulsant activities. The compounds were evaluated by MES and ScPTZ induced seizure models in mice. The three derivatives were shown to be active as anticonvulsant agents in one or more test models.

Pyrimidine

Alam et al. [37] synthesized a number of N-(4,6-substituted diphenylpyrimidine -2-yl) semicarbazones (42) derivatives and tested for their anticonvulsant activity against two seizure models, MES and ScPTZ. All compounds possessed the four essential pharmacophoric element for good anticonvulsant activity. Most of the compounds shows good anticonvulsant activity. CompoundN

© 2010, IJPBA. All Rights Reserved.
[4-(4-fluorophenyl)-6-(4-methylphenyl)pyrimidin-2-yl]-N4-chloroacetophenone) semicarbazone (42a), N1-[4-(4-chlorophenyl)-6-(3,4-dimethoxy phenyl) pyrimidin-2-yl]-N4-(4-nitrobenzaldehyde)-semicarbazone (42b) and N1-[4-(4-chlorophenyl)-6-(4-methylphenyl)pyrimidin-2-yl]-N4-(4-chloro aceto phenone) semicarbazone (42c) were found to be significantly active at lower dose of 30 mg/kg after 0.5 hr and also show the activity after 4hrs but at higher doses, thus show rapid onset and long duration of action. It was observed that the substitution at para position of hydrophobic domain by electron withdrawing groups and substitution at para position of distal aryl ring by electron releasing groups resulted in increased anticonvulsant activity. Substitution at the other aryl ring and the semicarbazone did not have any marked effect on activity.

Gupta et al [38] synthesized a series of triazolo[4,3-a]tetrahydrobenzo(b)thieno[3,2-e]pyrimidine-5(4 H)-ones (43). These five derivatives exhibited good activity when tested for anticonvulsant activity in mice at different dose level.

Paronikyan et al [39] synthesized a series of new derivatives of condensed thieno[3,2-d]pyrimidines and anticonvulsant activities of these synthesized compounds were studied. Several compounds (44a), (44b) and (45) had shown possessing specific anticonvulsant activity with respect to carbazole-induced convulsion.

Oganisyan et al [40] synthesized 4-substituted 6,7-dihydro-7,7-dimethyl-5-oxo-9H-pyrano-[4’3’;4,5]-thieno[3,2-e]imidazo-[1,2-a]pyrimidines. Anticonvulsant activity of synthesized compounds were studied and found that (46), (47a) and (47b) exhibited weak anticonvulsant effects.

Indole
Campagna et al [41] synthesized a series of 2-aryl-2,5-dihydropyridazino[4,3-b]indol-3(3H)-ones (48) and evaluated for their activity to prevent sound and pentylenetetrazole (PTZ) induced seizures in mice by inhibiting radioligand binding to benzodiazepine receptor BZR, and found that (48a) possess the best anticonvulsant activity.

Palluoto et al [42] synthesized a large series of 2-aryl-2,5-dihydropyridazino [4,3-b] indol-3 (3H)-ones having properly selected substituents at the indole and N2-phenyl ring and tested for anticonvulsant agents as central benzodiazepine receptor (BZR) ligands. Compounds with substituents as shown in structure (49a-f) and (50) reduces the onset of clonic and tonic seizures, 45 min after i.p administration of derivatives. The latter N5-methylated congener, displayed highest anticonvulsant activity.

Raj et al [43] synthesized 3-cycloalkanone-3-hydroxy-2-oxindoles (51), (52) by highly enantioselective catalysis synthesis using primary-tertiary diamine-Bronsted acid catalyst in both
organic medium and aqueous medium. The products obtained are active in maximal electroshock seizure test (MES) and pentylenetetrazol seizure threshold test (PTZ) and act as potential anticonvulsant.

tanton et al [44] synthesized related series of cycloalkyl [4,5] Pyrrolo [3,2,1-ij] quinolines and tested for anticonvulsant activity. The products were tested in rat maximal electroshock for anticonvulsant activity. The compounds 6-[(dimethyl-amino)methyl]-4,5,6,8,9,10-hexahydro cycloptenta [4,5] pyrrolo [3,2,1-ij] quinolines (53) and N-methyl-4,5,6,8,9,10,11,12-octahydro cyclohepta [4,5] pyrrolo [3,2,1-ij] quinoline-6-carboxamide (54) showed good activity.

Benzothiazole
Trapani et al [45] synthesized tetrahydropyrrolo[2,1-b]benzothiazole-1-ones (55) and its analogues and tested for anticonvulsant activity. Some of the compounds were effective against bicuculline induced seizures in mice, which reduces, at very high concentration, the binding of [35S]-tert-butylcyclophosphorothionate ([35S]TBPS) to recognition sites located at GABA-coupled chloride channel, but there is lack of co-relation between anticonvulsant activity of these compounds and their capability to displace [35S] TBPS binding. The most active compounds was 3a-methyl 1,2,3,3a-tetrahydropyrrolo [2,1-b] benzothiazol-1-one (55a).

Rana et al [46] synthesized a series of 1,3-benzothiazol-2-yl-benzamide (56) and evaluated for their anticonvulsant activity. Majority of the compounds were active in MES and sc PTZ screen.

Amnerkar et al [47] synthesized a series of 6-substituted-[3-substituted-prop-2-eneamido]-benzothiazole (57) and 6-substituted-2-[(1-acetyl-5-substituted)-2-pyrazoline-3-yl] amino benzothiazole (58) and evaluated experimentally against maximal electroshock test. The most active compound 6-methyl-2-[(1-acetyl-5-(4-chloro phenyl))-2-pyrazolin-3-yl]aminobenzthiazole (58a) exhibited an ED50 of 25.49 umol/kg, TD of 123.87umol/mg and high protective index 4.86 as compared to standard drug phenytoin.

Yogeeswari et al [48] synthesized 6-chlorobenzothiazolyl-2-thiosemicarbazones (59) and screened for anticonvulsant activity. Most of the compounds showed anticonvulsant activity against both maximal electroshock seizures(MES) and subcutaneous pentylenetetrazole screens. Compound [4-(6-chlorobenzothiazol-2-yl)-1-(3-isatinimino)thiosemicarbazone] (59a) emerged as the most promising one.

Siddiqui et al [49] synthesized a series of 1-(6-substituted-1,3-benzothiazol-2-yl)-3-(substituted phenyl)hexahydro-2,4,6-pyrimidinetriones (60), using substituted anilines as starting material. Synthesized compounds contain two active anticonvulsant pharmacophore, benzothiazole and barbituric acids and evaluated for their anticonvulsant activity. Compounds 1-(6-chloro-
1,3-benzothiazol-2-yl)-3-(2-methoxyphenyl) hexahydro-2,4,6-pyrimidinetrione (60a), 1-(6-chloro-1,3-benzothiazol-2-yl)-3-(4-methoxyphenyl) hexahydro-2,4,6-pyrimidinetrione (60b) and 1-(4-methoxyphenyl)-3-(6-nitro-1,3-benzothiazol-2-yl)hexahydro-2,4,6-pyrimidine trione (60c) showed promising anticonvulsant activities in maximal electroshock seizure test (MES) and subcutaneous pentylenetetrazole test (sc PTZ).

Conclusion: The present study revealed that all mentioned heterocyclic moieties and their derivatives, under this review showed promising anticonvulsant activities. These compounds and their modification can be considered as lead molecule for further investigation and thus to control epileptic seizure in patients.

References

