FT-IR Studies of Ethanolic Extract of Diascorea bulbifera IFERA

Asha Jyothi V*1, Satyavati D2

1Dept. of Pharmacology Shadan Womens College of Pharmacy, Khairathbad, Hyderabad, Telangana, India
2Brilliant college of Pharmacy, Koheda, Near Ramoji film city, Hyderabad, Telangana, India

Received 07 Jul 2015; Revised 12 Oct 2015; Accepted 22 Oct 2015

ABSTRACT
In the present study an attempt has been made to establish FT-IR profile and identify the functional components of Diascorea bulbifera. FTIR method was performed on a Thermo Scientific Spectrophotometer system which was used to detect the characteristic peak values and their functional groups. The results of Diascorea bulbifera bulbil FTIR analysis confirmed the presence of C-H bond stretching, carboxylic acid and aromatic group in chemical compounds which shows major peaks at 2955-924 cm⁻¹, 1683 cm⁻¹ and 1338-1319 cm⁻¹ respectively. The results of the present study produced the FTIR spectrum profile for the medicinally important plant Diascorea bulbifera.

Key words: Diascorea bulbifera, FTIR, Spectroscopy, Functional groups and Phytoestrogens.

INTRODUCTION
Fourier transform infrared spectrometry is a physico-chemical analytical technique that does not resolve the concentrations of individual metabolites but provides a snapshot of the metabolic composition of a tissue at a given time¹. FTIR can be employed to determine the structure of unknown composition and the intensity of the absorption spectra associated with molecular composition or content of the chemical group [1,2]. The FT-IR method measures the vibrations of bonds within chemical functional groups and generates a spectrum that can be regarded as a biochemical or metabolic “fingerprint” of the sample. By attaining IR spectra from plant samples, it might possible to detect the minor changes of primary and secondary metabolites [2, 3]. At present, particularly in phytochemistry, FT-IR has been exercised to identify the concrete structure of certain plant secondary metabolites [4-6]. But, on pharmacognosy front FT-IR is still a novel tool to characterize and identify the commercial components from the adulterant. FT-IR method has been successfully utilized in the characterization of bacterial, fungal and plant species [7-19]. FT-IR is one of the most widely used methods to identify the chemical constituents and elucidate the compounds structures, and has been used as a requisite method to identify medicines in Pharmacopoeia of many countries [12]. At the pharmacological front FT-IR is helpful tool to identify the compounds responsible for respective pharmacological activities.

Dioscorea bulbifera, the Air potato, belongs to yam species. It is also known as Varahi in Sanskrit, Kaachil in Malayalam and Dukkar Kandin Marathi. The Air potato plant is native to Africa and Asia. It is an invasive species in many tropical areas, including Florida. Dioscorea bulbifera is a perennial vine with broad leaves and has two types of storage organs. The plant forms bulbils in the leaf axils of the twining stems, and tubers beneath the ground. These tubers are like small, oblong potatoes, family belong to Solanaceae or Dioscoreaceae, they are edible and cultivated as a food crop, especially in West Africa. It typically climbs to the tops of trees and has a tendency to take over native plants. New plants develop from bulbils that form on the plant, and these bulbils serve as a means of dispersal. The aerial stems of air potato die back in winter season, but resprouting occurs from bulbils and underground tubers. The primary means of reproduction through bulbils. The fruits are in capsular form. Air potato has been used as
a folk remedy to treat conjunctivitis, diarrhea and dysentery, among other ailments.\[21]\.

MATERIALS AND METHODS

Collection and processing of plant material

* Dioscorea bulbifera * was procured from the authorized botanist Dr. Madhukar Reddy of Heritage bionaturals, Habsiguda, Hyderabad. Shade dried samples were grounded to fine powder using pulverizer. The powdered samples were then stored in a refrigerator for further use.

Extraction of plant material

The powdered bulb of * Dioscorea bulbifera * were extracted using ethanol with gentle stirring for 72 h separately at room temperature. The extracts were then filtered through Whatmann No. 1 filter paper and concentrated using rotaevaporator.

FTIR Spectroscopic Analysis

The FT-IR spectrophotometer used was Shumatzu at Osmania University. KBr is an important sample matrix for FTIR scanning. The KBr used was of IR grade (SD Fines). About 500 mg of KBr was placed into a mortar and grind it until there is no evidence of crystallinity. The KBr powder was transferred into the drying box at a temperature of 40°C. 10 mg of solid sample was placed into the mortar and again grind it until a fine powder is formed. Weigh 1mg of solid fine powder of sample (as per requirement of the die) and 200mg of dry fine powder of KBr. Weighed quantities were transferred into a mortar and mix well with the help of a spatula. Bottom and top portion of KBr were assembled at press assembly and one of the 13 mm die with the polished surface up inside the press. The KBr sample mixture was transferred to KBr press assembly. Second die was transferred inside the KBr press assembly with polished side down so that KBr sample mixture was sandwiched between the polished surfaces of the each die. The KBr was transferred to press assembly to press. Vacuum line was connected to evacuate air from the KBr press assembly with a vacuum pump. The die is slowly compressed in KBr press assembly until a pressure of 2000 kg/cm2 is achieved on gauge with the vacuum on. Making sure that pressure release valve is closed. After 60 s, slowly the pressure release valve is open to release the pressure and also the vacuum line is disconnected. The disc is checked if it is translucent and the sample is homogenously distributed in the disc [20]. The prepared disc is then subjected for scanning between 500-4000\(^{-1}\) cm.

RESULTS AND DISCUSSION

The FTIR spectrum was used to identify the functional group of the active components based on the peak value in the region of infrared radiation. The roots powder and ethanolic extracts evaporated powder of * Dioscorea bulbifera * was passed into the FTIR and the functional groups of the components were separated based on its peak ratio was shown in (Fig 1).

Fig 1: Showing the peaks of FT-IR scan of ethanolic extract * Dioscorea bulbifera *

The results of * Dioscorea bulbifera * roots FTIR analysis confirmed the presence of C-H bond stretching, carboxylic acid and aromatic group in chemical compounds which shows major peaks at 2955-924 cm\(^{-1}\), 1683 cm\(^{-1}\) and 1338-1319 cm\(^{-1}\) respectively. While the peak at 3390 cm\(^{-1}\), 1909-1890 cm\(^{-1}\), 1859-1844 cm\(^{-1}\) and a flat peak was observed was unidentified for any organic

© 2010, IJPBA. All Rights Reserved.
Asha Jyothi / FT-IR Studies of Ethanolic Extract of *Diascorea bulbifera* IFERA

constituents. The results of the present study produced the FTIR spectrum profile for the medicinally important plant *Diascorea bulbifera*.

CONCLUSION

Many researchers applied the FTIR spectrum as a tool for distinguishing closely associated plants and other organisms [1-19]. The results of the present study coincided with the previous observations observed by various plant biologist and taxonomist. The results of the present study developed novel phytochemical marker to identify the medicinally important plant. Further advanced spectroscopic studies are required for the structural elucidation and identification of active principles present in the leaves of *Diascorea bulbifera*.

REFERENCES

Asha Jyothi / FT-IR Studies of Ethanolic Extract of *Diascorea bulbifera* IFERA

