Antioxidant and Antimicrobial Properties of Leaves of *Lyonia ovalifolia* (Wallich)

Santosh Raman Acharya¹, Aarajana Shrestha¹, Bibek Gautam¹, Shreejana Maharjan¹, Deepak Basyal¹, Rajendra Gyawali¹,²

¹Department of Pharmacy, Central Institute of Science and Technology (CIST) College, Pokhara University, Kathmandu, Nepal
²Department of Pharmacy, Kathmandu University, Dhulikhel, Nepal

Received 21 May 2014; Revised 08 Aug 2014; Accepted 22 Aug 2014

ABSTRACT

Lyonia ovalifolia (Wallich) has been used in a folk medicine for the treatment of wounds, cuts, burns, scabies, etc. by different local communities of Nepal. Antimicrobial and antioxidant properties of *n*-hexane, chloroform, ethyl acetate, and ethanol extracts of leaves were evaluated. For assessing the antimicrobial property, theagar well diffusion method was used and for antioxidant property, the ferric reducing antioxidant power (FRAP) assay was used. The major classes of phytochemicals found in the chloroform fraction of leaves were alkaloids and this fraction was found to be most effective against all the tested bacteria viz: *Staphylococcus aureus*, *Escherichia coli*, *Salmonella typhii*, and *Pseudomonas aeruginosa*. But *P. aeruginosa* is the only tested organism which is inhibited by all the fractions of plant used in both the concentrations (250 mg/ml and 500 mg/ml). Similarly, on antioxidant assay IC₅₀ was found strong in ethyl acetate fraction (8.25 µg/ml) followed by chloroform (9.81 µg/ml), ethanol (15.49 µg/ml) and *n*-hexane (47.42 µg/ml) as compared to standard BHA with IC₅₀ of 30.31 (µg/ml). Thus, this study revealed that *L. ovalifolia* (Wallich) has a potential antimicrobial and antioxidant property which scientifically justifies its ethnomedicinal use.

Key words: *Lyonia ovalifolia*, antimicrobial and antioxidant properties, chloroform fraction, ethnomedicinal.

INTRODUCTION

Plants possess various secondary metabolites eliciting variety of biological activities including antimicrobial and antioxidant activity[¹-³]. Ancient people used plants as a medicine to treat various infections, there is great interest in the plants in order to derive the new therapeutic agents[⁴]. Among various infections, bacterial and fungal infections fall under the most common infection especially in developing countries like Nepal[⁵]. Increment of scope in antimicrobials from natural sources is because of increasing rate of multidrug resistant strains of microorganisms as well as newly developed strains with reduced susceptibility to available antimicrobial agents[⁶].

Reactive Oxygen Species (ROS) are highly reactive unstable ions or very small molecules formed inside living organisms as a result of oxidative stress, normal and pathological cell metabolic processes and exogenous pollutants (UV light, γ- radiation, cigarette smoke, etc.) which include hydrogen peroxide (H₂O₂), free radicals such as hydroxyl radical (·OH), superoxide anion (O²⁻), alkoxy and proxy radicals (RO· and ROO·), etc. ROS are very harmful as they react with various cellular components including DNA, proteins, lipids, fatty acids which primarily results in lipid peroxidation. Lipid peroxidation has major role in progression of various life threatening conditions like cancer, inflammation, cardiovascular diseases, infection, etc.[⁷]. Though synthetic antioxidant compounds such as Butylated Hydroxy Anisole (BHA), Butylated Hydroxy Toluene (BHT) etc. are available, due to their carcinogenicity and other side effects, these compounds have restricted use. So, the natural plant compounds having antioxidant property which can scavenge these free radicals and thus prevent action of ROS to damage cells are found to have great potency to ameliorate the diseases[⁸]. Nepal has about 7,000 species of flowering plants, 2,640 of which are endemic. The number of

*Corresponding Author: Santosh Raman Acharya, Email: acharyasra@gmail.com, equal contributed by all authors
Antioxidant and Antimicrobial Properties of Leaves of *Lyonia ovalifolia* (Wallich)

Plant material

Leaves of *L. ovalifolia* were collected from Roshi (Banepa) at the height of 1439 m in 17th July, 2013 and a voucher specimen (Herbarium No.CISTG301/2013) was taken to National Herbarium and Tissue Culture Laboratory, Lalitpur, Nepal for authentication and kept for future reference. Collected plant material was Soxhlet extracted using ethanol for 12 to 18 hours (≤ 50°C). The extract hence obtained was concentrated under reduced pressure using rotary evaporator (≤ 60°C) and was successively fractionated by three different solvents viz. n-hexane, chloroform and ethyl acetate. Such fractions were concentrated to near dryness under reduced pressure using rotary vacuum evaporator and further dried in petri plates using water bath (≤60°C). Lastly, the percentage yield of extracts was calculated and these crude extracts were stored in air tight container (inside refrigerator) for further studies.

Qualitative phytochemical screening

Each fractionated extract was subjected to qualitative test for alkaloids, saponins, tannins, flavonoids, terpenoids, phenols, protein and amino acids, phytosterols, carbohydrates, and glycosides using standard colour reactions to identify various phytoconstituents as described in standard texts\cite{20,21}.

Antioxidant activity

Antioxidant activity was determined as Ferric reducing antioxidant power (FRAP) assay\cite{22}. Each ml of five different concentration (1000 μg/ml, 500 μg/ml, 250 μg/ml, 125 μg/ml and 62.5 μg/ml) of extracts were mixed with 2.5 ml of phosphate buffer (adjusted to pH 6.6) and 2.5 ml of potassium ferric cyanide (30 mM). The mixture was incubated at 50°C for 20 minutes. After that, 2.5 ml trichloroacetic acid (600 mM) was added in each test tube. Finally, the mixture was centrifuged for 10 minutes at 3000 rpm. After centrifugation, 2.5 ml of supernatant was taken in which 2.5 ml distilled water and 0.5 ml ferric chloride (6 mM) was added. Then absorbance was measured at 700 nm using UV spectrophotometer (Shimazu 1700). Similarly, activity of different concentration of standard BHA was taken as positive control and DMSO as a negative control after addition of same reagents as for tests. The method was triplicated to take mean absorbance value. The percentage reduction of ferric ion was calculated as follows:

\[
\% \text{ reduction by test} = \frac{A_t}{A_s} \times 100
\]

\[
\% \text{ reduction by standard} = \frac{A_c}{A_s} \times 100
\]

where; \(A_t, A_s \) and \(A_c \) are absorbance of test, standard and control respectively.

Antimicrobial activity

The agar well diffusion assay was used to access antibacterial activity\cite{23}. All the antimicrobial studies were carried out in two different concentrations of extracts (500 mg/ml and 250 mg/ml). Stock solutions were prepared in DMSO for antibacterial activity, however chloroform was used to prepare stock solution for antifungal activity as DMSO itself possessed some antifungal activity\cite{24}.

Four species of bacteria, one gram positive, *Staphylococcus aureus* and three gram negative, *Escherichia coli*, *Salmonella typhi*, *Pseudomonas aeruginosa* and two species of fungi, *Candida albicans* and *Aspergillus niger* were collected from Institute of Medicine (IOM), Kathmandu, Nepal. Test bacteria were maintained on Nutrient Agar (NA) at 35±2°C while fungi were maintained on Potato Dextrose Agar (PDA) at 25±2°C. The concentration of bacterial and fungal cells (24 hours old) in the suspension was adjusted to 1x10^5 CFU/ml in Muller Hinton broth solution before streaking. Gentamycin (40 mg/ml) for *S.*
Results and Discussion
The percentage yield of the extracts was found to be highest in the ethanol 23.688 %, while other fractions were 0.431% in n-hexane, 2.621% in chloroform and 0.357 % ethyl acetate.
Findings of qualitative estimation of different phytochemicals revealed that the ethanol fraction was rich in the glycosides, phenol and tannin. Other fractions of the leaves possess different phytochemicals depending on the polarity of the solvents used (Table 1).

Table 1: Preliminary phytochemical analysis of fractionated extracts of leaves

<table>
<thead>
<tr>
<th>S. No</th>
<th>Phytochemical</th>
<th>n-Hexane</th>
<th>Chloroform</th>
<th>Ethyl acetate</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Tannins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>4</td>
<td>Flavonoids</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Terpenoids</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Phenols</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>7</td>
<td>Protein and amino acids</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Phytoesters</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Carbohydrates</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>10</td>
<td>Glycosides</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

Note: “++”: appreciable amount, “+”: trace amount, and “-”: completely absent

Result of assessment of antibacterial activity revealed variability in activity of different fractions (Table 2). Present finding shows that only the chloroform fraction is able to inhibit all the test bacteria in both the tested concentrations. However, a study done by Negi et al. reported that chloroform fraction of leaves is ineffective to E. coli[18]. Negi et al. used 100(mg/ml)of extract concentration which is not comparable with our concentrations viz: 500 (mg/ml) and 250(mg/ml). Therefore, it is confirmed from our study that chloroform fraction of leaves this plant is effective on higher concentrations against E.coli. It gave maximum ZOI of 13.00±0.50 (mm) against S. aureus followed by ZOI of 10.00±0.00 (mm) with P. aeruginosa at 500(mg/ml). However, P. aeruginosa is only the test bacterial which was inhibited by all four tested fractions. Similar findings were also reported by Panthi et al. showed that methanolic extract of young leaves and apical buds inhibited the growth of P. aeruginosa[19]. n-hexane fraction of leaves gave maximum ZOI of 10.50±0.86(mm) with P. aeruginosa at 500 (mg/ml). Terpenoids are generally recognized as safe and have been found to inhibit the growth of microorganisms[25]. As the n-hexane fraction of leaves were rich in terpenoids, the additive and synergistic effects of phytochemicals in extract might be responsible for their potent antimicrobial action against P. aeruginosa.

Table 2: Antibacterial activity of fractionated extracts of Leaves as ZOI [mm]

<table>
<thead>
<tr>
<th>Plant extracts</th>
<th>Bacteria</th>
<th>Fractions</th>
<th>Concentration</th>
<th>S. aureus</th>
<th>E. coli</th>
<th>S. typhi</th>
<th>P. aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane</td>
<td>E1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.50±0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>-</td>
<td>-</td>
<td>7.17±0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std.</td>
<td>13.83±1.25</td>
<td>14.00±0.50</td>
<td>17.33±0.28</td>
<td>21.50±0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>E1</td>
<td>13.00±0.50</td>
<td>6.50±0.25</td>
<td>8.92±1.50</td>
<td>10.00±0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>12.67±1.25</td>
<td>4.75±0.05</td>
<td>8.33±2.52</td>
<td>7.50±0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std.</td>
<td>16.42±0.95</td>
<td>13.83±0.28</td>
<td>16.83±1.75</td>
<td>21.50±0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>E1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.33±0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>-</td>
<td>-</td>
<td>2.67±0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std.</td>
<td>15.17±2.40</td>
<td>15.00±0.50</td>
<td>16.17±1.26</td>
<td>21.17±1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>E1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.00±0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>-</td>
<td>-</td>
<td>2.50±0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Antifungal activity was tested for only the chloroform fraction which possessed promising antibacterial effects against two species of fungi, Candida albicans and Aspergillus niger. No measurable ZOI was observed with A. niger (which is not shown here). However, fractionated chloroform extract showed a ZOI of 6.06±0.05 (mm) at 500(mg/ml) and 3.00±0.57 (mm) at 250(mg/ml) against C. albicans(Table 3). This is the first study to elucidate the antifungal activity of leaves of L. ovalifolia(Wallich).

<table>
<thead>
<tr>
<th>Concentration</th>
<th>ZOI [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>6.06±0.05</td>
</tr>
<tr>
<td>E2</td>
<td>3.00±0.57</td>
</tr>
<tr>
<td>Std.</td>
<td>11.33±0.60</td>
</tr>
</tbody>
</table>

Results expressed as Mean ± SD of triplicated experiment and there was confluent growth in chloroform (negative control)

Note: E1: fractionated extract of 500 (mg/ml), E2: fractionated extract of 250 (mg/ml), Std: Fluconazole (50mg/ml).

Above line graph (Figure 1) represents the dose dependent reduction of ferric ion to ferrous ion by fractionated extracts and standard at various concentrations while bar graph (Figure 2) represents anti-oxidant activity as IC$_{50}$(µg/ml). This anti-oxidant activity was determined by calculating the ferric reduction ability power where higher absorbance of Prussian blue color indicates a higher ferric reducing power. Comparing IC$_{50}$ of all fractionated leaves extracts, n-hexane being non polar solvent, its extracts was found to be least potent as it is expected to take steroidal compounds. IC$_{50}$ was in the order of ethyl acetate(8.25 µg/ml), chloroform(9.81 µg/ml), ethanol(15.49 µg/ml) and n-hexane (47.42 µg/ml) as compared to Standard BHA with IC$_{50}$ of 30.31 (µg/ml). Out of these, n-hexane fraction of leaf extract showed least reduction at 47.42(µg/ml) which was 64% effective as compared to standard. Plants containing polyphenolic compounds like flavonoids, saponins, terpenoids, tannins are antioxidant in nature[26]. Thus, the strong antioxidant activity shown by ethylacetate fraction may be due to presence of flavonoids and saponins(Table 1). Further more Lyoniside is a lignan glycoside which is found in leaves of Lyonia ovalifolia[27]. A study by Anna Set al. showed Lyoniside isolated from ethanolic extracts of rhizome and stem of bilberry (Vaccinium myrtillus L.) have significant radical scavenging activity in DPPH assay with IC$_{50}$ of 23 µg/ml[28]. Thus we can assume that the lyoniside present in the ethyl acetate fraction of leaves is responsible for the shown antioxidant activity.
use of L. ovalifolia (Wallich) as natural remedy for wounds, cuts and burns.

ACKNOWLEDGEMENT
We would like to thank Ohm Pharmaceuticals Laboratories Pvt. Ltd., Bhaktapur, Nepal for providing Ciprofloxacin standard and National Medicine Laboratory, Kathmandu, Nepal for providing Gentamycin and Fluconazole standard for our study.

REFERENCES
19. Panthi MP, Chaudhary RP. Antibacterial activity of some selected folklore