A Holistic Review on Nasoadhesive Microsphere

Neha Kashyap, Roshni Dhurve, Ashwani Mishra*, Anupam Kumar Pathak

Department of Pharmacy, Barkatullah University, Bhopal (M.P), India

Received 21 Feb 2014; Revised 02 May 2014; Accepted 14 May 2014

ABSTRACT
Nasal route has been demonstrated as a possible alternative to the intravenous route for the systemic delivery of drugs. It has been demonstrated that low absorption of drugs can be enhanced by increasing the drug residence time in the nasal cavity, by using mucoadhesive microspheres. The present review holds the brief introduction of the role of mucoadhesive microspheres in the nasal drug delivery, the interaction between the mucoadhesive microsphere and mucus, different theories of mucoadhesion and the researches done on nasoadhesive microspheres till date. As its Nasal route is being widely looked forward for the delivery of various drug categories for getting systemic as well as local effect and also for targeting drugs to brain

Key words: Nasoadhesive, Mucoadhesive, Mucus, Targeting, Systemic, Microsphere, Nasal route, Polymer, Brain.

INTRODUCTION
Nasal route has been demonstrated as being a possible alternative to the intravenous route for the systemic delivery of drugs. Along with the rapid absorption and avoidance of hepatic first-pass metabolism, the nasal route also allows the preferential delivery of drug to the brain via the olfactory region, and is thus, a promising approach for the rapid-onset delivery of medications [1].

Nasal therapy, has been recognized form of treatment in the Ayurvedic systems of Indian medicine, it is also called “NASAYA KARMA” [2]. In recent years many drugs have been shown to achieve better systemic bioavailability through nasal route than by oral administration [3].

The nose had been considered primarily as a route for local drug delivery. Advances in biotechnology have made available a large number of protein and peptide drugs for the treatment of a variety of diseases. These drugs are unsuitable for oral administration because they are significantly degraded in the gastrointestinal tract or considerably metabolized by first pass effect in the liver. The parenteral route is inconvenient for long term therapy as it is invasive. Among the various alternative routes tried, intranasal drug delivery is found much promising for administration of these drugs [4].

The larger drug molecules showed poor bioavailability, typically in the order of 5–10%. On the other hand, very good results were obtained with small organic molecules [5]. The causes of failure led to the conclusion that the short residence time of the formulation within the nasal cavity is the reason for the low permeability. Consequently, the attention shifted towards the mucoadhesive polymers, some of which would also demonstrate permeation-enhancing property [6]. The encouraging results stimulated the development of new generations of polymers based on pH or thermal responsiveness or modified existing polymers having improved bioadhesive or permeation-enhancing properties [7,8,9]. Even though a number of challenges are still to be overcome, especially with respect to toxicity, the potential of nasal drug delivery (NDD), including the ability to target drugs cross the blood–brain barrier (BBB), are very high and continues to stimulate academic and industrial research groups so that we will keep witnessing increasing number of advanced nasal drug delivery products.

NASAL ANATOMY AND PHYSIOLOGY
The nasal mucosa has been considered as a potential administration route to achieve faster and higher level of drug absorption. The reason for this is the large surface area, porous nature of

*Corresponding Author: Ashwani Mishra, Email: ashwanipharma@gmail.com
endothelial membrane, high total blood flow to the nasal cavity and the avoidance of first-pass metabolism. Various drugs including peptides and proteins had been administered nasally for getting systemic effect and investigated widely in recent years.

In the recent past many researchers have also attempted to deliver the drugs to the CNS through the nose [10-17]. The nose is divided into two nasal cavities by septum. The volume of each cavity is around 7.5mL and has a surface area approximately 75 cm² [18,19,20]. There are three distinct functional regions in the nose- the vestibular, respiratory and olfactory. Among these, the respiratory region is the most important for systemic drug delivery [20].

The respiratory epithelium consists of four types of cells-basal, mucus-containing goblet, ciliated columnar and nonciliated columnar cell [20,21]. The cilia move in a wave like fashion to transport particles to the pharynx area for ingestion [20,22]. Additionally, the cells in this region are covered by nearly 300 microvilli which provide a large surface area for absorption [20]. Below the epithelium is the lamina propria, where blood vessels, nerves, serous glands, and mucus secretory glands may be found [21]. The lamina propria possess a dense network of capillaries, through which drug absorption takes place. The nasal epithelium is covered by a mucus layer that is renewed every 10 to 15 minutes [23]. The pH of the mucosal secretions ranges from 5.5 to 6.5 in adults [24]. The mucus layer entraps particles, which are consequently cleared from the nasal cavity by the cilia. The mucus moves through the nose at a rate of 5 to 6 mm/ min (approximately) resulting in particle clearance every 20 minutes [19].

ADVANTAGES OF NASAL DRUG DELIVERY SYSTEM
1. Provides rapid absorption and fast onset of action of drug due to relatively large surface of absorption and high vascularization.
2. Avoidance of hepatic first pass metabolism and thus reduce the dose significantly as compared to oral delivery.
3. Penetration of lipophilic, low molecular weight drugs through the nasal mucosa is good.
4. Direct delivery of drug to the CNS via the olfactory region, thus, by-pass the blood brain barrier [25].
5. Direct delivery of vaccine to lymphatic tissue and induction of a secretory immune response at distant mucosal site [26].
6. Easy accessibility, non invasive drug delivery and do not require trained personnel; this facilitates self medication, thus patient compliance is improved as compared to parenteral routes [27].

DISADVANTAGES OF NASAL DRUG DELIVERY SYSTEM
1. All drugs cannot be given by this route.
2. Some drugs can cause nasal irritation.
3. Few drugs undergo enzymatic degradation in nasal cavity.

One of the major limitations of nasal route is the Mucociliary clearance. The function of mucociliary clearance system is to remove foreign substances and particles from the nasal cavity, consequently preventing them from reaching the lower airways. The normal mucociliary transit time in humans has been reported to be 12-15 min, which limits the time available for absorption [28,29]. Rapid mucociliary clearance of drug formulations that are administered in the nasal cavity is thought to be an important factor underlying the low bioavailability of intranasally administered drugs.

Microspheres can be used as carriers to encapsulate an active drug and can be designed to be mucoadhesive to increase the retention time and facilitate sustained release.

MUCOADHESIVE MICROSPHERES
Microspheres are small spherical particles (typically 1 μm to 1000 μm), sometimes referred to as microparticles. The microspheres can be
made up of either natural or synthetic polymers [30].

Generally microspheres possess potential to be employed for targeted and controlled release of drug, but incorporating mucoadhesive properties to microspheres will furthermore improve absorption and bioavailability of the drugs [31-34]. Tailored mucoadhesive microspheres offers the possibilities of localized as well as controlled release of drugs by adherence to any mucosal tissue present in eye, nasal cavity, urinary, and GI tract.

Advantages of Mucoadhesive Microspheres [30]:
1. Provide sustained therapeutic effect.
2. Reduces the frequency of drug administration and thus improve patient compliance.
3. Improve the bioavailability of drug by improving absorption.
4. As drug dose is reduced, the chance of adverse effects also decreased.

Limitation of Mucoadhesive Microspheres [30]:
1. The release rate may alter by a variety of factors like food and the rate of transit though gut, mucus turnover rate etc.
2. Differences in the release rate may occur from one dose to another.
3. Any loss of integrity of formulation alters the release pattern of the dosage form may lead to potential toxicity.
4. These dosage forms cannot be crushed or chewed.

Table 1: Some of Mucocoadhesive Polymers Used Are [35]

<table>
<thead>
<tr>
<th>Synthetic polymers</th>
<th>Natural polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxy propyl methyl cellulose (HPMC)</td>
<td>Chitosan</td>
</tr>
<tr>
<td>Poly acrylic acid polymers(carboxy polymers)</td>
<td>Sodium alginate</td>
</tr>
<tr>
<td>Poly vinyl pyrrolidone (PVP)</td>
<td>Pectin</td>
</tr>
<tr>
<td>Poly vinyl alcohol (PV A)</td>
<td>Locust bean gum</td>
</tr>
<tr>
<td>Poly hydroxyethyl methacrylate</td>
<td>Guara gum</td>
</tr>
<tr>
<td>Poly ethylene oxide</td>
<td>Xanthan gum</td>
</tr>
<tr>
<td>Sodium carboxy methyl cellulose (Na CMC)</td>
<td>Karaya gum</td>
</tr>
<tr>
<td>Hydroxyl ethyl cellulose (HEC)</td>
<td>Gelatin</td>
</tr>
<tr>
<td>Hydroxy propyl cellulose (HPC)</td>
<td>Tragacanth</td>
</tr>
<tr>
<td>Ethyl cellulose (EC)</td>
<td>Soluble starch</td>
</tr>
</tbody>
</table>

POLYMER –MUCUS INTERACTION

Several theories have been put forward to explain the mechanism of polymer–mucus interactions that lead to mucoadhesion. The series of events occurring during bioadhesion include an intimate contact between the bioadhesive polymer and the biological tissue due to proper wetting of the bioadhesive surface and swelling of the bioadhesive polymer, leading to the penetration of the bioadhesive into the tissue crevices, interpenetration between the mucoadhesive polymer chains and those of the mucus. Subsequently, weak chemical bonds can become operative [36,37].

Hydration of the polymer plays a very important role in bioadhesion. A critical degree of hydration is required for optimum bioadhesion. If there is incomplete hydration, the active adhesion sites are not entirely liberated and available for interaction. On the other hand, an excessive hydration leads to weakening due to over extension of the hydrogen bonds. During hydration, dissociation of hydrogen bonds of the polymer chains takes place. The polymer–water interaction becomes more than the polymer–polymer interaction, thereby making the polymer chains available for mucus penetration [38].

THEORIES OF MUCOADHESION

1. Electronic theory:
 According to this theory, electron transfer occurs upon contact of adhesive polymer with a mucus glycoprotein network because of difference in their electronic structures which results in the formation of electrical double layer at the interface. For example, Interaction between positively charged polymer- chitosan and negatively charged mucosal surface [39,40].

2. Adsorption theory:
 According to this theory, after an initial contact between two surfaces, the material adheres because of the presence of the surface force between the atoms of two surfaces. The adsorption theory of bioadhesion states that adhesion of a polymer to a biological tissue results due to: (1) primary chemical bonds that are somewhat strong and permanent and therefore undesirable in bioadhesion, (2) Vander Waals, hydrogen, hydrophobic and electrostatic forces form secondary chemical bonds [41-43].

3. Diffusion theory:
 According to this theory, a semi-permanent
adhesive bond is created between the polymer chains and the mucus when they mix to a sufficient depth. The depth to which the polymer chain penetrates the mucus depends on the diffusion coefficient and the time of contact [44,45].

4. Wetting theory:
The wetting theory postulates that if the contact angle of liquids on the substrate surface is less, then there is a high affinity for the liquid to the substrate surface and it spreads easily. When two substrate surfaces are brought in contact with each other in the presence of the liquid, the liquid may act as an adhesive between the two substrate surface [46-48].

5. Fracture Theory of Adhesion:
This theory states that the force required for the separation of two surfaces after adhesion is equal to adhesive strength through the following equation:

\[\sigma = (E \times \varepsilon L)^{1/2} \]

where; \(\sigma \) is the fracture strength, \(\varepsilon \) fracture energy, \(E \) young modulus of elasticity, and \(L \) the critical crack length. This theory is useful for the study of bioadhesion by tensile apparatus [49].

METHOD OF PREPARATION
Mucoadhesive microspheres can be prepared by using different techniques like:
1. Complex coacervation
2. Hot melt microencapsulation
3. Single emulsion technique
4. Double emulsion method
5. Solvent extraction method
6. Solvent evaporation method
7. Ionotropic gelation
8. Spray drying

Complex Coacervation:
In this method the coating material phase is prepared by dissolving immiscible polymer in a suitable vehicle and the core material is dispersed in a solution of the coating polymer under constant stirring. Microencapsulation is achieved by utilizing one of the methods of phase separation:
• by altering the temperature of the polymer solution
• by changing the pH of the medium
• by adding a salt or an incompatible polymer or a non-solvent to the polymer solution
• by inducing a polymer polymer interaction.

The microspheres thus formed are filtered and washed and dried [50,51].

Hot Melt Microencapsulation:
The polymer is first melted and then mixed with solid particles of the drug that have been sieved to less than 50 μm. The mixture is suspended in a non-miscible solvent (like silicone oil), continuously stirred, and heated to 5°C above the melting point of the polymer. After the emulsion is stabilized, it is cooled until the polymer particles solidify. The obtained microspheres are then washed by decantation with petroleum ether [52].

Single Emulsion Technique:
The microspheres of natural polymers are prepared by single emulsion technique. The polymers and drug are dissolved or dispersed in aqueous medium followed by dispersion in organic medium e.g. oil, results in formation of globules, and then the dispersed globules are cross linked by either using heat or by using the chemical cross-linkers. The chemical cross-linkers used are formaldehyde, glutaraldehyde, diacid chloride etc. [53]

Double Emulsion Method:
In this method an aqueous solution of drug and polymer is added to the organic phase with vigorous stirring to get primary water-in-oil emulsion. This emulsion is then poured to a large volume of water containing an emulsifier like polyvinyl alcohol or polyvinylpyrrolidone, under stirring, to get the multiple emulsions (w/o/w). The stirring is continued until most of the organic solvent evaporates, leaving solid microspheres. The microspheres are then washed and dried [54].

Solvent Extraction:
This method involves water miscible organic solvents such as isopropanol. Organic phase is removed by extraction with water. This process involves direct addition of the drug or protein to polymer organic solution which is then added to the aqueous continuous phase. The organic water miscible solvent on coming in contact with water is extracted and solid microspheres are eventually obtained [55].

Solvent Evaporation:
In this technique the drug is dissolved in polymer which was previously dissolved in water immiscible volatile organic phase and the resulting solution is added to aqueous phase containing emulsifying agent. The above mixture is stirred till the drug and polymer transformed into fine droplet which solidified into rigid
microspheres by solvent evaporation. The microspheres are then collected by filtration and washed with demineralised water and dried [55,56].

Ionotropic Gelation Method:
In this method, microspheres are formed by dissolving the gel type polymers (alginate, chitosan etc.) in an aqueous solution followed by suspending the drug in the polymer solution and extruding the solution through needle to produce micro droplets which fall into a polyionic hardening solution under stirring at low speed [57].

Spray Drying:
In Spray Drying the polymer is dissolved in a suitable volatile organic solvent such as dichloromethane, acetone, etc. The drug is then dispersed in the polymer solution under high-speed homogenization. After this dispersion is atomized in a stream of hot air leading to the formation of the small droplets or the fine mist from which the solvent evaporate instantaneously leading the formation of the microspheres. Micro particles are separated from the hot air by means of the cyclone separator while the trace of solvent is removed by vacuum drying [58].

EVALUATION OF MUCOADHESIVE MICROSPHERES
The microspheres are evaluated for the following parameters.

1. **Particle Size and Shape:**
 Light microscopy (LM) and scanning electron microscopy (SEM) both can be used to determine the size, shape and outer structure of microspheres [53].

2. **Surface Characterization of The Mucoadhesive Microspheres:**
 Data from the scanning electron microscopy, scanning tunneling microscopy and the electron microscopy provides insight to the surface morphology of microspheres and the morphological changes produced through degradation of polymer. Changes in the surface morphology occurring through degradation of polymer can be studied by incubating the microspheres in the phosphate buffer saline at different intervals of time. It was found that microspheres with the coarser surface improve the adhesion through stronger mechanical interactions, while smooth surface of the microspheres leads to weak mucoadhesive properties [32,46].

3. **Surface Charge Study:** From photon correlation spectroscopy data the surface charge (zeta potential) of the mucoadhesive microspheres can be determined. The surface charge can be determined by relating measured electrophoretic mobility into zeta potential with in-built software based on the Helmholtz–Smoluchowski equation. Zeta potential is an indicator of particle surface charge, which is used to predict and control the adhesive strength, stability, and the mechanisms of mucoadhesion [59].

4. **Entrapment Efficiency:**
The entrapment efficiency of the microspheres or the percent entrapment can be determined by keeping the microspheres into the buffer solution and allowing lysing. The lysate obtained is filtered or centrifuged and then subjected for determination of active constituents as per monograph requirement. The percent entrapment efficiency is calculated using following equation [53].

\[
\% \text{ Entrapment} = \frac{\text{Actual content}}{\text{Theoretical content}} \times 100
\]

5. **Swelling Index:**
Swelling index illustrate the ability of the mucoadhesive microspheres to get swelled at the absorbing surface by absorbing fluids available at the site of absorption, which is a primary requirement for initiation of mucoadhesion. The percent swelling value can be determined using following equation [60].

\[
\text{Percent swelling} = \frac{\text{DT} - \text{D0}}{\text{D0}} \times 100
\]

Where; \(\text{D0} = \) weight of dried microspheres
\(\text{DT} = \) weight of swelled microspheres.

6. **In-Vitro Diffusion Study:**
In Vitro diffusion studies can be performed using *in vitro* nasal diffusion cell. The receptor chamber is filled with buffer maintained at 37 ± 2°C. Accurately weighed microspheres equivalent to 10 mg are spread on sheep nasal mucosa. At selected time intervals, 0.5 ml of diffusion samples are withdrawn through a hypodermic syringe and replaced with the same volume of pre-warmed fresh buffer solution to maintain a constant volume of the receptor compartment. The samples are analyzed spectrophotometrically [61].

7. **Ex-Vivo Mucoadhesion Study:**
A strip of sheep nasal mucosa is mounted on a glass slide and 50 mg of accurately weighed microspheres are sprinkled on the nasal mucosa. This glass slide is incubated for 15 min in a desiccator at 90% relative humidity to
allow the polymer to interact with the membrane and finally placed on the stand at an angle of 45º. Phosphate buffered saline of pH 6.4 previously warmed to 37 ± 0.5 ºC is allowed to flow over the microspheres and membrane at the rate of 1 ml/min for 5 min with the help of a peristaltic pump. At the end of the process, the detached particles are collected and weighed [62].

\[
\% \text{ Mucoadhesion} = \left(\frac{W_a - W_1}{W_a} \right) \times 100
\]

Where; \(W_a \) is the weight of microspheres sprinkled, \(W_1 \) is the weight of microspheres detached.

8. Stability studies of Microsphere:
Stability studies are carried out at 5 ºC ± 3º C, 25 ºC ± 2 ºC /60% ± 5% RH and 40 ºC ± 2º C / 75% ± 5% RH. The selected formulations are packed in amber coloured glass containers and closed with air tight closures and stored for 90 days. Samples are analyzed at the end of 30, 60 and 90 days for % Drug entrapment efficiency, in vitro mucoadhesion test and in vitro drug diffusion studies [63].

9. Drug polymer interaction (FTIR) study:
The FTIR studies reveal the interactions between the drug and the polymer used.

RESEARCH DONE ON INTRANASAL MICROSPHERES
Various researches have been done using different mucoadhesive polymers. Chitosan has been widely used in researches. In 2014, Kashikar V et al., formulated and evaluated nasal mucoadhesive microsphere of Pirfenidone by spray drying and cross-linking method using chitosan and HPMC K4M. They concluded that drug release from microspheres followed non-Fickian diffusion kinetics and the histopathological study indicated nonirritant nature of microsphere [64].

A successful attempt was made by Dave K et al., in 2013 to deliver Lamotrigine via intranasal route as mucoadhesive microspheres, developed by emulsion-solvent evaporation using chitosan as polymer, cross linked by Glutaraldehyde. And similar work was done by Pilicheva B et al., in the same year using same polymer. They formulated and evaluated betahistine-loaded chitosan microspheres intended for nasal delivery using W/O emulsion solvent evaporation technique. Both the studies confirmed that chitosan based microspheres are suitable for the intranasal delivery of respective drugs [65,66].

Chitosan was also used by Nagda CD et al., 2012 for delivery of Ketorolac [67]. In 2011, Deshpande T. et al. and Ibezim EC. et al., for Sumatriptan and Pyrimethamine [68,69], respectively. Chitosan has been found compatible with many drugs namely, Promethazine HCL (Iliger SR. & Demappa T. 2011), Carvedilol (Patil S et al., 2010), Resveratrol (Peng H. et al., 2010), Clonazepam (Shaji J. et al., 2009), Amlodipine besylate (Patil SB & Murthy RS. 2006), Propranolol HCl (Harikarkpakee S. et al., 2006).

Egg albumin and Pectin were also used as a mucoadhesive polymer. In 2012, Jain BK prepared mucoadhesive norethisterone-egg albumin microspheres by multiple emulsion method by the glutaraldehyde cross linking and thermal denaturation technique for nasal administration. In same year Mahajan HA et al., prepared Odansetron microspheres by the spray-drying technique using pectin as polymer The results obtained showed that microspheres had sufficient mucoadhesive strength [67,68].

Gelatin, HPMC, Carbopol, PVA are other few polymers on which researches hav been done. In 2011, Iliger SR et al., formulated mucoadhesive microspheres of Promethazine hydrochloride in the blend of gelatin and chitosan for intranasal systemic by emulsion crosslinking method using Glutaradehyde as a crosslinking agent. Results showed good mucoadhesivity and drug release profile.

In 2011, Nanjwade BK et al., worked on HPMC and Carbopol for intranasal delivery of Neostigmine bromide. Both in-vitro and in-vivo studies concluded that Carbopol based microspheres are better than HPMC based microspheres for the delivery of Neostigmine Bromide. In 2011, Prajapati RK. et al. and Swamy NGN & Abbas Z used PGLA and PVA respectively for intranasal delivery of respective drugs, Carvedilol and Amlodipine besylate.

Different grades of HPMC were studied by Jain SA. et al., in 2009. They developed mucoadhesive microspheres of sumatriptan succinate (SS) using hydroxypropy methylcellulose (HPMC) K4M and K15M by spray-drying technique. The particle size, swelling ability and incorporation efficiency of microspheres was found to increase
with increasing drug-to-polymer ratio. Alginate was studied by Patil SB et al., in 2009. They aimed at development and optimization of alginate mucoadhesive microspheres of carvedilol for nasal delivery. The microspheres were prepared by water-in-oil (w/o) emulsification technique. In vitro mucoadhesion was observed in a range from 69.25-85.28. Starch was also studied for its mucoadhesive properties. In 2008, Yadav AV et al., formulated Domperidone microspheres for intranasal administration by emulsification crosslinking technique using starch a biodegradable polymer and epichlorhydrine as cross-linking agent. Bioadhesive strength was in range from 8.51 g to 9.67 g.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Compound</th>
<th>Polymer</th>
<th>Researcher, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pirfenidone</td>
<td>Chitosan, HPMC K4M</td>
<td>Kashikar V. et al., 2014</td>
</tr>
<tr>
<td>2</td>
<td>Lamotrigine</td>
<td>Chitosan</td>
<td>Dave K & Purolit S, 2013</td>
</tr>
<tr>
<td>3</td>
<td>Betahistine dihydrochloride</td>
<td>Chitosan</td>
<td>Pilicheva B et al., 2013</td>
</tr>
<tr>
<td>4</td>
<td>Norethisterone</td>
<td>Egg albumin</td>
<td>Jain BK, 2012</td>
</tr>
<tr>
<td>5</td>
<td>Odansetron</td>
<td>Pectin</td>
<td>Mahajan HA et al., 2012</td>
</tr>
<tr>
<td>6</td>
<td>Ketonolac</td>
<td>Chitosan, Carbopil and Carbopol</td>
<td>Nagda CD et al., 2012</td>
</tr>
<tr>
<td>7</td>
<td>Sumatriptan</td>
<td>Chitosan</td>
<td>Deshpande F et al., 2011</td>
</tr>
<tr>
<td>8</td>
<td>Pyrimethamine</td>
<td>Chitosan</td>
<td>Ibeizm EC et al., 2011</td>
</tr>
<tr>
<td>9</td>
<td>Sumatriptan</td>
<td>Chitosan</td>
<td>Khandan DKS et al., 2011</td>
</tr>
<tr>
<td>10</td>
<td>Neostigmine bromide</td>
<td>HPMC, Carbopil</td>
<td>Nanjwade BK et al., 2011</td>
</tr>
<tr>
<td>11</td>
<td>Carvedilol</td>
<td>PGLA</td>
<td>Prajapati RK et al., 2011</td>
</tr>
<tr>
<td>12</td>
<td>Amlodipine besylate</td>
<td>PVA</td>
<td>Swamy NGN & Abbas Z., 2011</td>
</tr>
<tr>
<td>13</td>
<td>Promethazine HCl</td>
<td>Gelatin A, Chitosan</td>
<td>Iliger SR & Demappa T., 2011</td>
</tr>
<tr>
<td>14</td>
<td>Midazolam</td>
<td>Carbopil 934P</td>
<td>Desai S et al., 2010</td>
</tr>
<tr>
<td>15</td>
<td>Carvedilol</td>
<td>Chitosan</td>
<td>Patil S et al., 2010</td>
</tr>
<tr>
<td>16</td>
<td>Resveratrol</td>
<td>Chitosan</td>
<td>Peng H et al., 2010</td>
</tr>
<tr>
<td>17</td>
<td>Sildenafil</td>
<td>Gelan gum</td>
<td>Shah V et al., 2010</td>
</tr>
<tr>
<td>18</td>
<td>Sumatriptan succinate</td>
<td>HPMC K4M, HPMC K15M</td>
<td>Jain SA et al., 2009</td>
</tr>
<tr>
<td>19</td>
<td>Carvedilol</td>
<td>Alginate</td>
<td>Patil SB & Sawant KK., 2009</td>
</tr>
<tr>
<td>20</td>
<td>Clozapam</td>
<td>Gelatin -Chitosan</td>
<td>Shaji J et al., 2009</td>
</tr>
<tr>
<td>21</td>
<td>Domeperidone</td>
<td>Starch</td>
<td>Yadav AV et al., 2008</td>
</tr>
<tr>
<td>22</td>
<td>Propranolol HCl</td>
<td>Gelatin</td>
<td>Dandagi P et al., 2007</td>
</tr>
<tr>
<td>23</td>
<td>Amlodipine besylate</td>
<td>Chitosan</td>
<td>Patil SB & Murthy RS., 2006</td>
</tr>
<tr>
<td>24</td>
<td>Propranolol HCl</td>
<td>HPMC, Chitosan, Carbopil934P</td>
<td>Harikampakdee S et al., 2006</td>
</tr>
</tbody>
</table>

APPLICATION OF NASAL DRUG DELIVERY SYSTEM

Local delivery [94,95]:
Antihistamines and corticosteroids for rhinosinusitis and nasal decongestants for cold symptoms are common examples for the local delivery of drugs via nasal route.

Systemic delivery [94,96-98]:
The intranasal administration of drugs is an effective way for systemic availability of drugs as compared to oral and intravenous routes as it facilitates fast and extended drug absorption. Examples include analgesics (morphine), cardiovascular drugs as propranolol and carvedilol, hormones such as levonorgestrel, progesterone and insulin, anti-inflammatory agents as indomethacin and ketorolac, and antiviral drugs (acyclovir). Some examples which are available in the market include zolmitriptan and sumatriptan for the treatment of migraine and cluster headaches.

Nasal vaccines [99-101]:
Nasal mucosa is the first site of contact with inhaled antigens and therefore, it is used for vaccination, especially against respiratory infections. Examples of the human efficacy of intranasal vaccines include those against influenza A and B virus, proteosoma-influenza, adenovirus-vectored influenza, group B meningococcal native, attenuated respiratory syncytial virus and para-influenza 3 virus.
CNS delivery through nasal route[95]:
The delivery of drugs to the CNS from the nasal route may occur via olfactory neuro-epithelium and also via trigeminal nerve system. Drug delivery through nasal route into CNS has been reported for Alzheimer’s disease, brain tumors, epilepsy, pain and sleep disorder.

CONCLUSION
A Conclusion which can be drawn from the review is that, mucoadhesive microspheres thus offer versatile and promising drug delivery system which enhances bioavailability and specific needs by utilizing multiple modification steps, polymer, methods and number of process parameters of dosage form and it symbolize adaptability, compatibility and versatility of mucoadhesive microsphere for nasal cavity.

REFERENCES
46. Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer
90. Patil SB, Murthy RS. Preparation and in vitro evaluation of mucoadhesive chitosan microspheres of Amlodipine besylate for...

